

Lewatit MonoPlus® S 108 KR -- сильнокислотный катионит гелевой структуры с монодисперсным распределением зерен в полностью регенерированной форме (не менее 99% H⁺). Ионит имеет высокую степень очистки (в том числе крайне низкое остаточное содержание хлорид ионов) и удовлетворяет требованиям к катионитам в атомной энергетике.

Иониты ядерного класса Lewatit® KR обладают высокой химической, осмотической и механической стабильностью.

Благодаря уникальной технологии производства ионит обладает высокой полной и динамической обменной емкостью, обеспечивает крайне низкий проскок ионов и высокую эффективность использования реагента для регенерации.

Благодаря отличным гидродинамическим свойствам иониты, Lewatit® KR позволяют работать на высоких скоростях потока. Высокая однородность (коэфф монодисперсности не более 1,05(+/- 0.05)) и крайне малое (не более 0.1 %) содержание мелких гранул с диаметром менее 0,4 мм позволяют снизить потери давления на фильтре по сравнению со стандартными ионитами. Применение этих ионитов в контурах с радиоактивным теплоносителем позволяет решать ряд специфических задач и получать воду с параметрами соответствующим требованиям атомной энергетики.

Ионит Lewatit® MonoPlus S 108 KR прошел тестирование в лаборатории ВНИИАЭС и внесен в перечень смол рекомендованных к применению на российских АЭС.

Lewatit MonoPlus® S 108 KR используется для:

- » Удаление катионов, в том числе радиоактивных изотопов из водных растворов (контроль pH путем адсорбции избыточного ⁷ Li)
- » Обеззараживание контуров на АЭС
- » Удаление радиоактивных катионов (высокая селективность по цезию 137)
- » Обработка теплоносителя первого контура
- » Высокоэффективная очистка продувочных вод парогенератора в присутствии различных корректирующих добавок (Левоксин, морфолин, ЭТА)
- » Удаление радиоактивных продуктов деления и коррозии, в том числе механическая фильтрация взвешенных веществ
- » Тонкой очистки на ФСД в смеси с **Lewatit MonoPlus® M 800 KR** или **Lewatit MonoPlus® MP 800 KR**

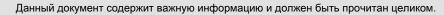
Важно!

Проведите промывку катионита обессоленной водой перед началом эксплуатации или смешиванием с Lewatit MonoPlus® M 800 KR или Lewatit MonoPlus® MP 800 KR

Особые свойства данного продукта могут быть использованы оптимально лишь в том случае, если технология и конструкция фильтра соответствуют современному уровню. Более подробные консультации по данному вопросу можно получить непосредственно в отделе Ионообменных смол компании Ланксесс.

Данный документ содержит важную информацию и должен быть прочитан целиком.

Редакция: 2011-10-13


Общее описание

Ионная форма при	H⁺
поставке	
Функциональная группа	-SO₃H
Матрица	стирол-дивинилбензол
Структура	гелевая
Внешний вид	черно-коричневые
	гранулы

Физико-химические свойства

		метрическая система	
Коэффициент однородности*		макс.	1.05 (+/- 0.05)
Средний размер гранул*		ММ	0.65 (+/- 0.05)
Насыпная плотность	(+/- 5 %)	г/д	790
Плотность		примерно г/мл	1,22
Содержание воды	•	вес. %	47 - 53
Общая обменная емкость*		минимум экв/л	2,0
Дыхательная разность	H+> Na+	макс. об. %	-10
Стабильность	в диапазоне рН		0 - 14
Сохранность	продукта	максимум месяцев	12
Сохранность	в диапазоне температур	°C	-20 - +40
Ионная конверсия		мин. мол. %	99

^{*} Являются данными спецификации. Подлежат постоянному контролю.

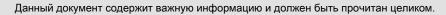
Редакция: 2011-10-13

Анализ следовых количеств элементов

Na	макс.	мг / кг сухой смолы	20
Ca	макс.	мг / кг сухой смолы	10
K	макс.	мг / кг сухой смолы	10
Mg	макс.	мг / кг сухой смолы	10
Fe	макс.	мг / кг сухой смолы	25
Cu	макс.	мг / кг сухой смолы	10
Al	макс.	мг / кг сухой смолы	10
Со	макс.	мг / кг сухой смолы	10
Pb	макс.	мг / кг сухой смолы	10
Hg	макс.	мг / кг сухой смолы	1
SiO ₂	макс.	мг / кг сухой смолы	50
Хлориды	макс.	мг/л	10
Тяжелые металлы (в виде Pb)	макс.	мг / кг сухой смолы	10

Данный документ содержит важную информацию и должен быть прочитан целиком.

Редакция: 2011-10-13



Рекомендуемые условия применения*

		метрическая система			
Рабочая температура		макс. °С	120		
Рабочий диапазон рН			0 - 14		
Высота слоя	•	мин. Мм	800		
Коэффициен	(15 °C)	прим. кПа*ч/м²	1,0		
гидравлического	,	·		,	
сопротивления					
Падение давления		макс. кПа	200		
Линейная скорость	при насыщении	макс. м/ч	5 - 120		
Регенерант			HCI	/	H ₂ SO ₄
Регенерация	уровень	прим. г/л	HCI H ₂ SO ₄		0 - 100 0 - 200
Регенерация	концентрация	прим. вес. %	HCI H₂SO₄		4 - 10 1.5 - 5
Регенерация/	•	м/ч	1 - 10		
замещающая промывка					
rinse					
Работа ФСД					
Высота слоя		мин. Мм	600		
Регенерант	тип		HCI	/	H ₂ SO ₄
Регенерант	уровень	прим. г/л	80 - 150		
Регенерант	концентрация	прим. вес. %	2 - 10		
Потребность в промывочной воде	быстро / медленно	прим. об. слоя	2/2		

^{*} рекомендуемые условия использования относятся к использованию продукта при нормальных условиях работы. Они основаны на испытаниях, проводимых на опытных установках, и данных, полученных при промышленном применении. Тем не менее, требуются дополнительные расчеты необходимых объемов смолы для определенных параметров ионного обмена. Их можно найти в нашем Техническом Информационном Бюллетене.

Редакция: 2011-10-13

Дополнительная информация и правила

Техника безопасности

Сильные окислители, такие как азотная кислота, могут вызвать бурную реакцию при контакте с ионообменной смолой.

Токсичность

Учитывать данные листа безопасности. Он содержит информацию об обозначениях, транспортировке и хранении, а также информацию об обращении с данным продуктом и данные по экологии.

Утилизация

В Европейском Сообществе утилизация ионообменных смол происходит согласно Европейской номенклатуре отходов, которая доступна на интернет-сайте Европейского сообщества.

Хранение

Рекомендуется хранить ионообменные смолы в сухом месте при температуре выше нуля, под крышей и без прямого воздействия солнечных лучей. Для предотвращения термического и осмотического шока замороженные ионнообменные смолы должны быть медленно разморожены при комнатной температуре

Приведенная выше информация, а также наши письменные, устные и основанные на экспериментах консультации по технологии применения, осуществляются самым добросовестным образом, но считаются лишь рекомендациями, не имеющими обязательной силы, также и в отношении возможных охраняемых прав третьих лиц. Консультации не освобождают Вас от собственной проверки наших консультационных рекомендаций и наших продуктов на их пригодность для предусмотренных технологических процессов и целей. Применение, использование и переработка наших продуктов, а также продуктов, изготовленных Вами на основании наших консультаций по технологии применения лежат за пределами наших возможностей контроля и поэтому находятся исключительно в сфере Вашей ответственности. Продажа продуктов осуществляется в соответствии с нашими ""Общими условиями продажи и поставки"". Вся информация и техническая поддержка предоставляется без гарантий и может быть изменена без предупреждений. Вы принимаете и освобождаете нас от ответственности в правонарушениях, контрактах и др., связанных с использованием нашей продукции, технической поддержки или предоставлении информации. Любое утверждение, не содержащееся здесь, не авторизовано и не связано с нами. Ничего, из приведенного здесь не может быть истолковано как рекомендация к использованию любого продукта в противоречии с патентом, связанным с материалом или его использованием. Никакой лицензии не подразумевается или она предоставляется при заявлении любого патента.

Lanxess Deutschland GmbH BU ION D-51369 Leverkusen

lewatit@lanxess.com

www.lewatit.com www.lanxess.com

Данный документ содержит важную информацию и должен быть прочитан целиком.

Редакция: 2011-10-13

